Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 105: 117732, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643719

RESUMO

Virus entry inhibitors are emerging as an attractive class of therapeutics for the suppression of viral transmission. Naturally occurring pradimicin A (PRM-A) has received particular attention as the first-in-class entry inhibitor that targets N-glycans present on viral surface. Despite the uniqueness of its glycan-targeted antiviral activity, there is still limited knowledge regarding how PRM-A binds to viral N-glycans. Therefore, in this study, we performed binding analysis of PRM-A with synthetic oligosaccharides that reflect the structural motifs characteristic of viral N-glycans. Binding assays and molecular modeling collectively suggest that PRM-A preferentially binds to branched oligomannose motifs of N-glycans via simultaneous recognition of two mannose residues at the non-reducing ends. We also demonstrated, for the first time, that PRM-A can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vitro. Significantly, the anti-SARS-CoV-2 effect of PRM-A is attenuated in the presence of the synthetic branched oligomannose, suggesting that the inhibition of SARS-CoV-2 infection is due to the interaction of PRM-A with the branched oligomannose-containing N-glycans. These data provide essential information needed to understand the antiviral mechanism of PRM-A and suggest that PRM-A could serve as a candidate SARS-CoV-2 entry inhibitor targeting N-glycans.


Assuntos
Antivirais , Polissacarídeos , Pradimicinas e Benanomicinas , SARS-CoV-2 , Internalização do Vírus , SARS-CoV-2/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Humanos , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Chlorocebus aethiops , Animais , Células Vero
2.
Viruses ; 14(1)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062347

RESUMO

Ebola virus disease (EVD) is a lethal disease caused by the highly pathogenic Ebola virus (EBOV), and its major symptoms in severe cases include vascular leakage and hemorrhage. These symptoms are caused by abnormal activation and disruption of endothelial cells (ECs) whose mediators include EBOV glycoprotein (GP) without the need for viral replication. However, the detailed molecular mechanisms underlying virus-host interactions remain largely unknown. Here, we show that EBOV-like particles (VLPs) formed by GP, VP40, and NP activate ECs in a GP-dependent manner, as demonstrated by the upregulation of intercellular adhesion molecules-1 (ICAM-1) expression. VLPs-mediated ECs activation showed a different kinetic pattern from that of TNF-α-mediated activation and was associated with apoptotic ECs disruption. In contrast to TNF-α, VLPs induced ICAM-1 overexpression at late time points. Furthermore, screening of host cytoskeletal signaling inhibitors revealed that focal adhesion kinase inhibitors were found to be potent inhibitors of ICAM-1 expression mediated by both TNF-α and VLPs. Our results suggest that EBOV GP stimulates ECs to induce endothelial activation and dysfunction with the involvement of host cytoskeletal signaling factors, which represent potential therapeutic targets for EVD.


Assuntos
Ebolavirus/fisiologia , Células Endoteliais/metabolismo , Glicoproteínas/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Transdução de Sinais , Apoptose , Sobrevivência Celular , Citoesqueleto , Células HEK293 , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Fatores Hospedeiros de Integração , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Cinética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Replicação Viral
3.
Sci Rep ; 11(1): 21259, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711897

RESUMO

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently a serious public health concern worldwide. Notably, co-infection with other pathogens may worsen the severity of COVID-19 symptoms and increase fatality. Here, we show that co-infection with influenza A virus (IAV) causes more severe body weight loss and more severe and prolonged pneumonia in SARS-CoV-2-infected hamsters. Each virus can efficiently spread in the lungs without interference by the other. However, in immunohistochemical analyses, SARS-CoV-2 and IAV were not detected at the same sites in the respiratory organs of co-infected hamsters, suggesting that either the two viruses may have different cell tropisms in vivo or each virus may inhibit the infection and/or growth of the other within a cell or adjacent areas in the organs. Furthermore, a significant increase in IL-6 was detected in the sera of hamsters co-infected with SARS-CoV-2 and IAV at 7 and 10 days post-infection, suggesting that IL-6 may be involved in the increased severity of pneumonia. Our results strongly suggest that IAV co-infection with SARS-CoV-2 can have serious health risks and increased caution should be applied in such cases.


Assuntos
COVID-19/complicações , Infecções por Orthomyxoviridae/complicações , Pneumonia Viral/complicações , SARS-CoV-2 , Animais , COVID-19/patologia , COVID-19/virologia , Coinfecção/patologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-6/sangue , Pulmão/diagnóstico por imagem , Pulmão/patologia , Mesocricetus , Orthomyxoviridae/patogenicidade , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Replicação Viral
4.
FEBS Open Bio ; 11(5): 1452-1464, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33822489

RESUMO

Human pathogenic RNA viruses are threats to public health because they are prone to escaping the human immune system through mutations of genomic RNA, thereby causing local outbreaks and global pandemics of emerging or re-emerging viral diseases. While specific therapeutics and vaccines are being developed, a broad-spectrum therapeutic agent for RNA viruses would be beneficial for targeting newly emerging and mutated RNA viruses. In this study, we conducted a screen of repurposed drugs using Sendai virus (an RNA virus of the family Paramyxoviridae), with human-induced pluripotent stem cells (iPSCs) to explore existing drugs that may present anti-RNA viral activity. Selected hit compounds were evaluated for their efficacy against two important human pathogens: Ebola virus (EBOV) using Huh7 cells and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using Vero E6 cells. Selective estrogen receptor modulators (SERMs), including raloxifene, exhibited antiviral activities against EBOV and SARS-CoV-2. Pioglitazone, a PPARγ agonist, also exhibited antiviral activities against SARS-CoV-2, and both raloxifene and pioglitazone presented a synergistic antiviral effect. Finally, we demonstrated that SERMs blocked entry steps of SARS-CoV-2 into host cells. These findings suggest that the identified FDA-approved drugs can modulate host cell susceptibility against RNA viruses.


Assuntos
Antivirais/farmacologia , Reposicionamento de Medicamentos , Vírus de RNA/efeitos dos fármacos , RNA Viral/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Reposicionamento de Medicamentos/métodos , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/virologia , Testes de Sensibilidade Microbiana/métodos , Pioglitazona/farmacologia , Vírus de RNA/fisiologia , Cloridrato de Raloxifeno/farmacologia , SARS-CoV-2/fisiologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Vírus Sendai/efeitos dos fármacos , Vírus Sendai/fisiologia , Células Vero , Tratamento Farmacológico da COVID-19
5.
Biochem Biophys Res Commun ; 545: 203-207, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33571909

RESUMO

The current COVID-19 pandemic requires urgent development of effective therapeutics. 5-amino levulinic acid (5-ALA) is a naturally synthesized amino acid and has been used for multiple purposes including as an anticancer therapy and as a dietary supplement due to its high bioavailability. In this study, we demonstrated that 5-ALA treatment potently inhibited infection of SARS-CoV-2, a causative agent of COVID-19, in cell culture. The antiviral effects could be detected in both human and non-human cells, without significant cytotoxicity. Therefore, 5-ALA is worth to be further investigated as an antiviral drug candidate for COVID-19.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Ácidos Levulínicos/farmacologia , Animais , Antivirais/administração & dosagem , COVID-19/prevenção & controle , COVID-19/virologia , Células CACO-2 , Chlorocebus aethiops , Ácido Cítrico , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Compostos Ferrosos/farmacologia , Humanos , Ácidos Levulínicos/administração & dosagem , Células Vero , Ácido Aminolevulínico
6.
PLoS Pathog ; 11(11): e1005263, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26562011

RESUMO

Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/tratamento farmacológico , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Animais , Células Cultivadas , Humanos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , RNA Viral/genética , Replicação Viral/efeitos dos fármacos
7.
Science ; 347(6225): 995-8, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25722412

RESUMO

Ebola virus causes sporadic outbreaks of lethal hemorrhagic fever in humans, but there is no currently approved therapy. Cells take up Ebola virus by macropinocytosis, followed by trafficking through endosomal vesicles. However, few factors controlling endosomal virus movement are known. Here we find that Ebola virus entry into host cells requires the endosomal calcium channels called two-pore channels (TPCs). Disrupting TPC function by gene knockout, small interfering RNAs, or small-molecule inhibitors halted virus trafficking and prevented infection. Tetrandrine, the most potent small molecule that we tested, inhibited infection of human macrophages, the primary target of Ebola virus in vivo, and also showed therapeutic efficacy in mice. Therefore, TPC proteins play a key role in Ebola virus infection and may be effective targets for antiviral therapy.


Assuntos
Antivirais/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/fisiologia , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/terapia , Terapia de Alvo Molecular , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Células 3T3 BALB , Benzilisoquinolinas/farmacologia , Benzilisoquinolinas/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio/genética , Ebolavirus/efeitos dos fármacos , Feminino , Técnicas de Inativação de Genes , Células HeLa , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/virologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Camundongos , NADP/análogos & derivados , NADP/metabolismo , Interferência de RNA , Transdução de Sinais , Verapamil/farmacologia , Verapamil/uso terapêutico
8.
Int J Biochem Cell Biol ; 42(9): 1482-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20580677

RESUMO

Rev, a viral regulatory protein of HIV-1, binds through its arginine-rich domain to the Rev-responsive element (RRE), a secondary structure in transcribed HIV-1 RNA. Binding of Rev to RRE mediates export of singly spliced or unspliced mRNAs from the nucleus to the cytoplasm. It has been previously shown that a certain arginine-rich peptide exhibits not only RRE-binding ability but also cell permeability and antagonism of CXCR4, one of the major coreceptors of HIV-1. Here we designed and synthesized arginine-rich peptides derived from the RNA-binding domain of Rev (Rev(34-50)) and evaluated their anti-HIV-1 activities. Rev(34-50)-A(4)C, comprising Rev(34-50) with AAAAC at the C-terminus to increase the alpha-helicity, inhibited HIV-1 entry by CXCR4 antagonism and virus production in persistently HIV-1-infected PM1-CCR5 cells. Interestingly, similar motif of human lymphotropic virus type I Rex (Rex(1-21)) also exerted moderate anti-HIV-1 activity. These results indicate that arginine-rich peptide, Rev(34-50)-A(4)C exerts dual antagonism against CXCR4 and Rev.


Assuntos
HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Receptores CXCR4/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Produtos do Gene rev do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Linhagem Celular , Citometria de Fluxo , Infecções por HIV/tratamento farmacológico , HIV-1/patogenicidade , Humanos , Peptídeos/química
9.
Retrovirology ; 6: 114, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20003485

RESUMO

BACKGROUND: DNA double strand break (DSB) repair enzymes are thought to be necessary for retroviral infection, especially for the post-integration repair and circularization of viral cDNA. However, the detailed roles of DSB repair enzymes in retroviral infection remain to be elucidated. RESULTS: A GFP reporter assay showed that the infectivity of an HIV-based vector decreased in ATM- and DNA-PKcs-deficient cells when compared with their complemented cells, while that of an MLV-based vector was diminished in Mre11- and DNA-PKcs-deficient cells. By using a method based on inverse- and Alu-PCR, we analyzed sequences around 3' HIV-1 integration sites in ATM-, Mre11- and NBS1- deficient cells. Increased abnormal junctions between the HIV-1 provirus and the host DNA were found in these mutant cell lines compared to the complemented cell lines and control MRC5SV cells. The abnormal junctions contained two types of insertions: 1) GT dinucleotides, which are normally removed by integrase during integration, and 2) inserted nucleotides of unknown origin. Artemis-deficient cells also showed such abnormalities. In Mre11-deficient cells, part of a primer binding site sequence was also detected. The 5' host-virus junctions in the mutant cells also contained these types of abnormal nucleotides. Moreover, the host-virus junctions of the MLV provirus showed similar abnormalities. These findings suggest that DSB repair enzymes play roles in the 3'-processing reaction and protection of the ends of viral DNA after reverse transcription. We also identified both 5' and 3' junctional sequences of the same provirus by inverse PCR and found that only the 3' junctions were abnormal with aberrant short repeats, indicating that the integration step was partially impaired in these cells. Furthermore, the conserved base preferences around HIV-1 integration sites were partially altered in ATM-deficient cells. CONCLUSIONS: These results suggest that DSB repair enzymes are involved in multiple steps including integration and pre-integration steps during retroviral replication.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Infecções por HIV/enzimologia , HIV-1/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Proteínas de Ciclo Celular , Linhagem Celular , DNA/análise , DNA/genética , DNA/metabolismo , Proteína Quinase Ativada por DNA/deficiência , Proteínas de Ligação a DNA/deficiência , Endonucleases , Genoma Humano , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteína Homóloga a MRE11 , Dados de Sequência Molecular , Proteínas Nucleares/deficiência , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Supressoras de Tumor/deficiência , Integração Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA